STRUCTURE OF THE FLAVONOIDS

FROM Datisca cannabina. III

T. T. Pangarova and G. G. Zapesochnaya

In the present communication we give the properties of two flavonol glycosides that we have isolated previously [1, 2].

Compound (I), with the composition $C_{28}H_{32}O_{14}$, mp 233-235°C (Kofler), $[\alpha]_D^{20} - 73^\circ$ (0.4; pyridine), $R_f 0.8$ (under conditions 2), λ_{max}^{MeOH} 267, 312, 340 nm (inflection) (log ϵ 4.43, 3.99, 3.92), NaOAc 266 nm.

Acid and enzymatic hydrolysis yielded in equimolar amounts an aglycone $C_{16}H_{12}O_5$, mp 198-199°C, M^+ 284, λ_{max}^{MeOH} 239, 267, 310, 360 nm (diacetate with mp 170-171°C), identified as izalpinin (3,5-dihydroxy-7-methoxyflavone), and D-glucose and L-rhamnose.

In the NMR spectrum of the TMS ether of (I), the carbohydrate protons were represented in the form of three doublets at 5.77 ppm, J=7 Hz (H-1 of β -D-glucose), 4.18 ppm, J=2 Hz (H-1 of α -rhamnose), 1.64 ppm, J=6 Hz (CH₃ of rhamnose), and a multiplet at 3.2-3.7 ppm (10 H).

The acetylation of the glycoside (Ac₂O, pyridine, 20°C, 24 h) gave a heptaacetate with the composition $C_{42}H_{46}O_{21}$, mp 114-115°C. In its NMR spectrum (Fig. 1), the signals of the five protons of the B ring form two multiplets in the 7.45-8.0 ppm region; H-8 and H-6 form doublets at 6.77 and 6.54 ppm. the CH₃Ogroup a singlet at 3.82 ppm, and the seven acetoxy groups singlets from 1.9 to 2.40 ppm. The integration of the signals in the 4.5-5.5 ppm region (8 H) and the 3.2-3.7 ppm region (4 H), in combination with the position of the signal of the rhamnose CH₃ group (doublet at 1.0 ppm) and of its anomeric proton (boradened singlet at 4.4 ppm) permit their assignment to the signals of rutinose [3]. The presence of the signals of an acetoxy group at 2.40 ppm [4] permits the assumption that in the initial compound the 5-OH group is free. Thus, the compound isolated has the structure of 3,5-dihydroxy-7-methoxyflavone 3-O-[O- α -L-rhamnopyranosyl-(1 \rightarrow 6)- β -D-glucopyranoside], or izalpin 3-rutinoside, to which we have given the name of cannabin [1].

Compound (II), has the composition $C_{27}H_{30}O_{14}$, mp 155-156°C, $[\alpha]_D^{20}-12^\circ$ (0.33; pyridine), R_f 0.37, λ_{max}^{MeOH} 267, 312, 340 nm (inflection) (log ε 4.25, 3.90, 3.87).

Fig. 1. NMR spectrum of cannabin acetate (CDCl₃, internal standard HMDS, Varian HA-100D).

All-Union Scientific-Research Institute of Medicinal Plants. Translated from Khimiya Prirodnykh Soedinenii, No. 6, pp. 790-791, November-December, 1974. Original article submitted February 13, 1974.

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

Fig. 2. NMR spectrum of the TMS ether of galanginoside in CCl₄.

Acid hydrolysis gave the same sugars as in (I) and an aglycone $C_{15}H_{10}O_5$ with M^+ 270, mp 218°C, λ_{max} 267, 360 nm, identical with galangin (3,5,7-trihydroxyflavone).

The NMR spectrum of the TMS ether (Fig. 2), in contrast to that of (I), had no singlet of a CH_3O group, but otherwise the spectra coincided. The chemical shifts and the splitting constants of the protons of the sugars enabled them to be assigned to rutinose [5]. The NMR spectrum of the acetate of (II) lacked the signal of the CH_3O group present in the acetate of (I) and, in addition to the 5-OAc group (2.42 ppm) it showed the signal of a second acetoxy group (2.2 ppm); otherwise the spectra were again identical.

The attachment of the rutinose to the 3-OH group was shown by the position of the signal of the anomeric glucose proton (5.79 ppm) [5] and by the UV spectrum (NaOAc: 276 nm). On the basis of the information obtained, it may be concluded that the compound isolated is 3,5,7-dihydroxyflavone 3-O-[O- α -L-rhamno-pyranosyl- $(1 \rightarrow 6)$ - β -D-glucopyranoside], or galangin 3-rutinoside, which we propose to call galanginoside. This compound has possibly been isolated previously, but its structure was not established [6, 7].

Thus, all the glycosides isolated from the roots of <u>Datisca cannabina</u> – daticin, datinoside, cannabin, and galanginoside – are 3-rutinosides. This agrees with literature information that a highly selective enzyme [6] hydrolyzing only 3-rutinosides of flavonols and not splitting off other sugars or even rutinose in position 7 of flavonoids has been found in the roots of this plant [6].

LITERATURE CITED

- 1. G. G. Zapesochnaya, A. I. Ban'kovskii, and M. M. Molodozhnikov, Khim. Prirodn. Soedin., 179 (1969).
- 2. T. T. Pangarova and G. G. Zapesochnaya, Khim. Prirodn. Soedin., 788 (1974) [in this issue].
- 3. H. Rösler et al., J. Org. Chem., <u>30</u>, 4346 (1965).
- 4. W. E. Hillis et al., Australian J. Chem., <u>18</u>, 531 (1965).
- 5. T. J. Mabry, K. R. Markham, and M. B. Thomas, The Systematic Identification of Flavonoids, Springer, New York (1970), p. 268.
- 6. J. Favre-Bonvin, M. Massias, and J. Massicot, Compt. Rend. Acad. Sci. (D), 268, 2495 (1969).
- 7. H. Grisebach and H. J. Grambow, Phytochem., 7, 51 (1968).